Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
Viruses ; 14(8)2022 07 27.
Article in English | MEDLINE | ID: covidwho-1969495

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) is the safest and most effective strategy for controlling the pandemic. However, some cases of acute cardiac events following vaccine administration have been reported, including myocarditis and myocardial infarction (MI). While post-vaccine myocarditis has been widely discussed, information about post-vaccine MI is scarce and heterogenous, often lacking in histopathological and pathophysiological details. We hereby present five cases (four men, mean age 64 years, range 50-76) of sudden death secondary to MI and tightly temporally related to COVID-19 vaccination. In each case, comprehensive macro- and microscopic pathological analyses were performed, including post-mortem cardiac magnetic resonance, to ascertain the cause of death. To investigate the pathophysiological determinants of MI, toxicological and tryptase analyses were performed, yielding negative results, while the absence of anti-platelet factor 4 antibodies ruled out vaccine-induced thrombotic thrombocytopenia. Finally, genetic testing disclosed that all subjects were carriers of at least one pro-thrombotic mutation. Although the presented cases do not allow us to establish any causative relation, they should foster further research to investigate the possible link between COVID-19 vaccination, pro-thrombotic genotypes, and acute cardiovascular events.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocardial Infarction , Myocarditis , Aged , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Male , Middle Aged , Myocardial Infarction/complications , Myocardial Infarction/pathology
3.
Elife ; 102021 07 22.
Article in English | MEDLINE | ID: covidwho-1513065

ABSTRACT

Immature neutrophils and HLA-DRneg/low monocytes expand in cancer, autoimmune diseases and viral infections, but their appearance and immunoregulatory effects on T-cells after acute myocardial infarction (AMI) remain underexplored. We found an expansion of circulating immature CD16+CD66b+CD10neg neutrophils and CD14+HLA-DRneg/low monocytes in AMI patients, correlating with cardiac damage, function and levels of immune-inflammation markers. Immature CD10neg neutrophils expressed high amounts of MMP-9 and S100A9, and displayed resistance to apoptosis. Moreover, we found that increased frequency of CD10neg neutrophils and elevated circulating IFN-γ levels were linked, mainly in patients with expanded CD4+CD28null T-cells. Notably, the expansion of circulating CD4+CD28null T-cells was associated with cytomegalovirus (CMV) seropositivity. Using bioinformatic tools, we identified a tight relationship among the peripheral expansion of immature CD10neg neutrophils, CMV IgG titers, and circulating levels of IFN-γ and IL-12 in patients with AMI. At a mechanistic level, CD10neg neutrophils enhanced IFN-γ production by CD4+ T-cells through a contact-independent mechanism involving IL-12. In vitro experiments also highlighted that HLA-DRneg/low monocytes do not suppress T-cell proliferation but secrete high levels of pro-inflammatory cytokines after differentiation to macrophages and IFN-γ stimulation. Lastly, using a mouse model of AMI, we showed that immature neutrophils (CD11bposLy6GposCD101neg cells) are recruited to the injured myocardium and migrate to mediastinal lymph nodes shortly after reperfusion. In conclusion, immunoregulatory functions of CD10neg neutrophils play a dynamic role in mechanisms linking myeloid cell compartment dysregulation, Th1-type immune responses and inflammation after AMI.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HLA-DR Antigens/immunology , Monocytes/immunology , Myocardial Infarction/immunology , Neprilysin/immunology , Neutrophils/immunology , Aged , Animals , Biomarkers , Cell Differentiation , Cell Proliferation , Cytokines , Female , Humans , Inflammation , Lymphocyte Activation , Male , Mice , Middle Aged , Myocardial Infarction/pathology , T-Lymphocytes/immunology
4.
PLoS One ; 16(10): e0257910, 2021.
Article in English | MEDLINE | ID: covidwho-1448575

ABSTRACT

BACKGROUND: The first Covid-19 epidemic outbreak has enormously impacted the delivery of clinical healthcare and hospital management practices in most of the hospitals around the world. In this context, it is important to assess whether the clinical management of non-Covid patients has not been compromised. Among non-Covid cases, patients with Acute Myocardial Infarction (AMI) and stroke need non-deferrable emergency care and are the natural candidates to be studied. Preliminary evidence suggests that the time from onset of symptoms to emergency department (ED) presentation has significantly increased in Covid-19 times as well as the 30-day mortality and in-hospital mortality. METHODS: We check, in a causal inference framework, the causal effect of the hospital's stress generated by Covid-19 pandemic on in-hospital mortality rates (primary end-point of the study) of AMI and stroke over several time-windows of 15-days around the implementation date of the State of Emergency restrictions for COVID-19 (March, 9th 2020) using two quasi-experimental approaches, regression-discontinuity design (RDD) and difference-in-regression-discontinuity (DRD) designs. Data are drawn from Spedali Civili of Brescia, one of the most hit provinces in Italy by Covid-19 during March and May 2020. FINDINGS: Despite the potential adverse effects on expected mortality due to a longer time to hospitalization and staff extra-burden generated by the first wave of Covid-19, the AMI and stroke mortality rates are overall not statistically different during the first wave of Covid-19 than before the first peak. The obtained results provided by RDD models are robust also when we account for seasonality and unobserved factors with DRD models. INTERPRETATION: The non-statistically significant impact on mortality rates for AMI and stroke patients provides evidence of the hospital ability to manage -with the implementation of a dual track organization- the simultaneous delivery of high-quality cares to both Covid and non-Covid patients.


Subject(s)
COVID-19/pathology , Myocardial Infarction/mortality , Stroke/mortality , COVID-19/epidemiology , COVID-19/virology , Databases, Factual , Emergency Medical Services , Hospital Mortality , Hospitalization , Humans , Italy/epidemiology , Myocardial Infarction/pathology , Pandemics , Retrospective Studies , SARS-CoV-2/isolation & purification , Stroke/pathology
6.
Cardiovasc Res ; 117(10): 2161-2174, 2021 08 29.
Article in English | MEDLINE | ID: covidwho-1266111

ABSTRACT

We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches, such as a glycocalyx mimetic, were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to-cell communication, in particular, the relevance of extracellular vesicles, such as exosomes, which transport proteins, lipids, non-coding RNAs, and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.


Subject(s)
Biomedical Research , Cardiology , Cell Proliferation , Heart Failure/pathology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Regeneration , Animals , COVID-19/pathology , COVID-19/virology , Cell Communication , Cellular Microenvironment , Exosomes/metabolism , Exosomes/pathology , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Phenotype , RNA, Untranslated/metabolism , SARS-CoV-2/pathogenicity
8.
J Cardiovasc Pharmacol Ther ; 26(3): 217-224, 2021 May.
Article in English | MEDLINE | ID: covidwho-1127659

ABSTRACT

The SARS-CoV-2 virus has resulted in over 88 million cases worldwide of COVID-19 as of January 2021. The heart is one of the most commonly affected organs in COVID-19, but the nature and extent of the cardiac pathology has remained controversial. It has been shown that patients infected with SARS-CoV-2 can sustain type 1 myocardial infarction in the absence of significant atherosclerotic coronary artery disease. However, many patients present with small elevations of troponin enzymes of unclear etiology which correlate with overall COVID-19 disease outcome. Early autopsy reports indicated variable levels of typical lymphocytic myocarditis, while radiology reports have indicated that myocarditis can be a persistent problem after recovery from acute illness, raising concern about participation in college athletics. In this communication, we review the literature to date regarding the gross and microscopic findings of COVID-19 cardiac involvement, present the findings from over 40 cases from our academic medical center, and propose mechanisms by which patients develop small elevations in troponin. .


Subject(s)
COVID-19/pathology , Heart/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Comorbidity , Diagnostic Imaging , Humans , Inflammation Mediators/metabolism , Myocardial Infarction/pathology , Myocarditis/pathology , SARS-CoV-2 , Troponin/biosynthesis
9.
Stem Cells Transl Med ; 10(6): 883-894, 2021 06.
Article in English | MEDLINE | ID: covidwho-1060671

ABSTRACT

While mesenchymal stromal cells are an appealing therapeutic option for a range of clinical applications, their potential to induce clotting when used systemically remains a safety concern, particularly in hypercoagulable conditions, such as in patients with severe COVID-19, trauma, or cancers. Here, we tested a novel preclinical approach aimed at improving the safety of mesenchymal stromal cell (MSC) systemic administration by use of a bioreactor. In this system, MSCs are seeded on the exterior of a hollow-fiber filter, sequestering them behind a hemocompatible semipermeable membrane with defined pore-size and permeability to allow for a molecularly defined cross talk between the therapeutic cells and the whole blood environment, including blood cells and signaling molecules. The potential for these bioreactor MSCs to induce clots in coagulable plasma was compared against directly injected "free" MSCs, a model of systemic administration. Our results showed that restricting MSCs exposure to plasma via a bioreactor extends the time necessary for clot formation to occur when compared with "free" MSCs. Measurement of cell surface data indicates the presence of known clot inducing factors, namely tissue factor and phosphatidylserine. Results also showed that recovering cells and flushing the bioreactor prior to use further prolonged clot formation time. Furthermore, application of this technology in two in vivo models did not require additional heparin in fully anticoagulated experimental animals to maintain target activated clotting time levels relative to heparin anticoagulated controls. Taken together the clinical use of bioreactor housed MSCs could offer a novel method to control systemic MSC exposure and prolong clot formation time.


Subject(s)
Bioreactors , COVID-19/therapy , Cell Culture Techniques/methods , Mesenchymal Stem Cell Transplantation/methods , Thrombosis/prevention & control , Animals , Anticoagulants/pharmacology , Blood Coagulation Tests , Bone Marrow Cells/cytology , Cells, Cultured , Dogs , Heparin/pharmacology , Humans , Male , Membranes, Artificial , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/prevention & control , SARS-CoV-2 , Swine
10.
Circulation ; 143(10): 1031-1042, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1043632

ABSTRACT

BACKGROUND: Cardiac injury is common in patients who are hospitalized with coronavirus disease 2019 (COVID-19) and portends poorer prognosis. However, the mechanism and the type of myocardial damage associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain uncertain. METHODS: We conducted a systematic pathological analysis of 40 hearts from hospitalized patients dying of COVID-19 in Bergamo, Italy, to determine the pathological mechanisms of cardiac injury. We divided the hearts according to presence or absence of acute myocyte necrosis and then determined the underlying mechanisms of cardiac injury. RESULTS: Of the 40 hearts examined, 14 (35%) had evidence of myocyte necrosis, predominantly of the left ventricle. Compared with subjects without necrosis, subjects with necrosis tended to be female, have chronic kidney disease, and have shorter symptom onset to admission. The incidence of severe coronary artery disease (ie, >75% cross-sectional narrowing) was not significantly different between those with and without necrosis. Three of 14 (21.4%) subjects with myocyte necrosis showed evidence of acute myocardial infarction, defined as ≥1 cm2 area of necrosis, whereas 11 of 14 (78.6%) showed evidence of focal (>20 necrotic myocytes with an area of ≥0.05 mm2 but <1 cm2) myocyte necrosis. Cardiac thrombi were present in 11 of 14 (78.6%) cases with necrosis, with 2 of 14 (14.2%) having epicardial coronary artery thrombi, whereas 9 of 14 (64.3%) had microthrombi in myocardial capillaries, arterioles, and small muscular arteries. We compared cardiac microthrombi from COVID-19-positive autopsy cases to intramyocardial thromboemboli from COVID-19 cases as well as to aspirated thrombi obtained during primary percutaneous coronary intervention from uninfected and COVID-19-infected patients presenting with ST-segment-elevation myocardial infarction. Microthrombi had significantly greater fibrin and terminal complement C5b-9 immunostaining compared with intramyocardial thromboemboli from COVID-19-negative subjects and with aspirated thrombi. There were no significant differences between the constituents of thrombi aspirated from COVID-19-positive and -negative patients with ST-segment-elevation myocardial infarction. CONCLUSIONS: The most common pathological cause of myocyte necrosis was microthrombi. Microthrombi were different in composition from intramyocardial thromboemboli from COVID-19-negative subjects and from coronary thrombi retrieved from COVID-19-positive and -negative patients with ST-segment-elevation myocardial infarction. Tailored antithrombotic strategies may be useful to counteract the cardiac effects of COVID-19 infection.


Subject(s)
COVID-19/virology , Coronary Thrombosis/etiology , Myocardial Infarction , Myocardium/pathology , Aged , COVID-19/pathology , Coronary Thrombosis/pathology , Coronary Thrombosis/virology , Coronary Vessels/pathology , Coronary Vessels/virology , Female , Heart/virology , Humans , Italy , Male , Middle Aged , Myocardial Infarction/pathology , Myocardial Infarction/virology , SARS-CoV-2 , ST Elevation Myocardial Infarction/epidemiology , ST Elevation Myocardial Infarction/virology
12.
Platelets ; 32(3): 314-324, 2021 Apr 03.
Article in English | MEDLINE | ID: covidwho-748271

ABSTRACT

Platelets are increasingly being recognized for playing roles beyond thrombosis and hemostasis. Today we know that they mediate inflammation by direct interactions with innate immune cells or secretion of cytokines/chemokines. Here we review their interactions with neutrophils and monocytes/macrophages in infection and sepsis, stroke, myocardial infarction and venous thromboembolism. We discuss new roles for platelet surface receptors like GPVI or GPIb and also look at platelet contributions to the formation of neutrophil extracellular traps (NETs) as well as to deep vein thrombosis during infection, e.g. in COVID-19 patients.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Myocardial Infarction/immunology , Neutrophils/immunology , Sepsis/immunology , Stroke/immunology , Venous Thromboembolism/immunology , Blood Platelets/pathology , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cell Communication/genetics , Cell Communication/immunology , Cytokines/genetics , Cytokines/immunology , Extracellular Traps/genetics , Extracellular Traps/immunology , Gene Expression Regulation , Humans , Inflammation , Macrophages/immunology , Macrophages/pathology , Monocytes/immunology , Monocytes/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Neutrophils/pathology , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/immunology , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/immunology , Sepsis/genetics , Sepsis/pathology , Stroke/genetics , Stroke/pathology , Venous Thromboembolism/genetics , Venous Thromboembolism/pathology
SELECTION OF CITATIONS
SEARCH DETAIL